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Various approaches have been proposed for the conformational behaviour of macromolecules with mixed 
statistics, i.e. chain molecules which are described by different statistics on different length scales. An example is 
the concentration blob model where the chain experiences excluded volume effects on a small length scale 
whereas these effects are screened on large length scales. In the present work, I propose a generic model for the 
description of chain statistics which includes the blob model as a special case. The chain is treated as a succession 
of n segments. These segments are steps of an uncorrelated random walk. The conformational behaviour of each 
segment is determined by the exponent v relating the average extension of the segment to its contour length. 
Explicit expressions are given for the mean squared end-to-end distance R 2 and the radius of gyration Rg of the 
chain for arbitrary n and u. For u = 1 the transition from rigid rod (n = 1) to broken rod (n > 1) behaviour is 
described. The case 1/2 < ~, < 1 yields a general description of chain statistics in the blob model. The models 
proposed comprise two cases: model I, where all subsegments have the same length; and model II, where the 
breaking points between two segments are distributed randomly along the chain. It is shown under which 
conditions the widely used relation Rag = R2/6 loses its validity. © 1998 Elsevier Science Ltd. All rights reserved. 

( K e y w o r d s :  c o n f o r m a t i o n ;  r a n d o m  wa lk ;  b lob  theory) 

INTRODUCTION 

The conformational  behaviour of  polymers  is usually 
discussed in terms of random walk models. There are 
several approaches. On the one hand the concept of  the 
continuous chain, where the polymer  is represented by a 
continuous curve in space, has been proven to be 
successful 1. On the other hand many results have been 
obtained by treating the polymer  as a chain of  bonds with 
finite length. For  the latter approach there are two 
possibilities: either each bond is thought to represent a 
chemical  bond of  the real polymer  2, in which case the 
chemical  structure prescribes the angles between two 
successive bonds; or the two end-points of  a subsequence 
containing m chemical  bonds are taken to define a fictitious 
bond 3. I f m  is large enough the resultin§ random walk can be 
discussed in terms of  the Pearson walk or as a random walk 
on a lattice 3. 

With  the aid of  such coarse-grained random walk models  
one seeks to derive how the extension of  the chain depends 
on the contour length L or the number of  random walk steps 
N and how this dependence is affected by certain constraints 
such as excluded volume conditions or solvent quality. The 
degree of  extension is described by the mean squared end- 
to-end distance R 2 and by the radius of  gyration Rg. 
Relations such as R 2 ~ N 2~ are often used. u = 1/2 for the 
simple random walk (RW) which is realized when excluded 
volume effects are absent or screened, e.g. under theta 
conditions and in the melt. u = 3/5 for the self-avoiding 
random walk (SAW) which is a model  for a polymer  in a 
good solvent. These radii are used to compare theoretical 
predictions with the results from scattering experiments via 
analysis of  the scattered intensity at low angles ~. 

There are many cases where it has proven useful to treat 
the conformational  behaviour of  polymers  on an inter- 
mediate level lying between the level of  chemical  fine 
structure and the level where the chain is described by one 
or two parameters. An example is the blob model  for 
semidilute solutions the 3 5 6 polymer  where polymer chains 
o v e r l a p " .  One chain is represented by a succession of 
virtual blobs. Inside a blob the chain interacts with itself via 
excluded volume e f f e c t s - - i t  is swollen (u = 3/5). Over 
distances larger than the blob size this interaction is 
screened by the presence of  the other chains, i.e. on a 
large scale the chain behaves as a simple R W  (u = 1/2). 

Another  example is given by the class of polymers 
consisting of  stiff or semiflexible segments connected by 
flexible joints. Such systems have been synthesized 7"8 and 
are realized in nature, e.g. when DNA undergoes the coil-to- 
helix transition 9"1°. Locally the chain can be treated as a 
rigid or semirigid rod (t, = 1), whereas on a large scale the 
RW case is recovered. Theories for such systems have been 
developed in numerous papers 1L-16. For both classes, the 
blobs and the broken rods, one might introduce the term 
'mixed statistics' in the sense that the statistical description 
using u depends on the length scale being considered. 

In the following, I propose a model  which comprises and 
generalizes some of  the random walk models discussed 
above. Explicit  expressions for R 2 and Rg are given. The 
model  incorporates the standard concentration blob model  
and a generalization for blobs with differing sizes. By 
straightening the segments in the blobs (u ---* 1) the 
conformational  statistics of  a broken rod with constant or 
varying segment length are obtained. How this model  is 
related to existing approaches 11-16 will be discussed below. 
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Figure 1 Sketch of the various types of random walk model which are 
described in the appropriate limit by the present model, n is the number of 
subsegments and ~, is the exponent for the random walk statistics inside a 
subsegment. The subsegments are not correlated, as is indicated by the 
blob-picture in the middle of the box (n = 6, ~ = 3/4) 

THE MODEL 

I consider a chain made of N monomers of  length a, i.e. the 
contour length is L = Na. This chain is divided into n 
segments of  contour lengths bi. Thus segment i consists of  
bi/a monomers. Inside a segment the chain obeys random 
walk statistics determined by the exponent u, i.e. r 2 = 
a2(bi/a) 2~. r~ is the mean squared end-to-end distance of  
segment i. The segments are not correlated, i.e. R 2 =  ~r]. 
Two cases can be discerned: model I where all segments are 
of  the same length b = L/n; and model II in which the points 
where the segments are connected by flexible joints (break- 
ing points) are located randomly along the contour length of  
the chain. Figure 1 shows how this approach comprises 
some of  the standard random walk models. With n = 1 the 
standard self-avoiding walk (SAW) is described, R 2 oc N2t 
The case of a rod is given by n = 1 and v = 1. The case n > 1 
and v = 1 yields the (n - 1)-fold broken rod. In the limit l/n 
---, 0 one obtains the simple RW case when looking at a 
length scale larger than L/n. For the description to be 
sensible it is presupposed that N >> n. In the following the 
chain segments are treated as continuous chain segments; 
thus the summation over the monomers can be replaced by 
integration. In this case, the radius of gyration is given by 

2 1 I L f L ( 2  ) 
Rg = ~ 0 0 ~ (sl, s2) dslds2 (1) 

where si is the curvilinear distance measured along the con- 
tour of  the chain. 7(Sl, s2) is the vector between the points of  
the chain at sl and s2. The averaging (.) is performed with 
respect to all conformations. 

Model I: constant segment length b = L/n 
This case is depicted for n = 4 and three different values 

of  v in Figure 2a. R 2 is trivially given by 

R2(n, u) =na 2 _~ N2~ a2n 1- 2~ (2) 

which reduces to R 2 = Na 2 for u = 1/2 and R 2 = nb 2 for u = 
1. The radius of  gyration is derived using equation (1), after 
separating into contributions from inside segment i and 
between two different segments i, j:  

<F2(S1, 52))  

a2 ((~l - or2) 2~ for i = j  

a 2 [(1 - ~1)2~ + + ( ~ - i l -  1) ] for i :~j  

(3) 

v=l  

v=3/4 

~ v=l/2 ~ ' ~  
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Figure 2 Realization of a random walk with n = 4 subsegements (a) of 
equal length (model I) and (b) of arbitrary lengths with fixed overall contour 
length (model II). The three cases p = 1 (straight segments), u = 3/4 (SAW 
in two dimensions) and ~ = 1/2 (simple RW) for the statistics inside the 
segments are depicted. For the sake of better visualization the end-to-end 
distance of the segments was taken to be the same in the three cases, and not 
the total contour length L 

with the reparametrization sl, 2 = Na(i -- 1 +Otl, 2)" i, 
n \  

j = 1 . . . . .  n and c~1, 2 E [0, 1]. After integrating with respect 
to Oil, 2 and summing over i and j, one obtains: 

R2(n, v ) =  6 - ~ n /  n - 3 2 ~ T q - +  n ; + i - J  (4) 

For v = 1/2 equation (4) reduces to R~ = Na2/6 which is a 
well known result for simple random walks. The radius of  
gyration of  an SAW is found to be 

a 2 N  2v 
R (1, 

2(2~ + 1)(v + 1)" 

For u = 1 and n = 1 one recovers the result for a rigid rod, 
R~ = L2/12. 

Model H: varying segment lengths b i 

The total contour length L = Na is kept constant. But, in 
contrast to model I, the (n - 1) breaking points where two 
segments join are randomly distributed along the contour. 
The probability of  finding a breaking point in a given 
interval of  the contour is assumed to be proportional to the 

2 2 length of  this interval. The expressions for R and Rg which 
are derived in the following are averages over all possible 
realizations of  segment lengths bi, subject to the condition 
that ~,b i -= L. An example of  this model is given in Figure 2b 

2 for the case of n = 4 subsegments. In model II R is defined 
by 

where the averaging is performed with respect to all possi- 
ble distributions of  the (n - 1) breaking points along the 
contour. Respecting that these points are indistinguishable 
and performing the respective n-fold integral, one obtains: 

R2(n, v)=N2~a 2r(n+ l)r(2v+ 1) 
r (2v  + n) 

(6) 

F(x) is the Gamma function 17 with F(x) = ( x -  1)F(x - 1) 
and F(1) = 1. For v = 1/2 one obtains R 2 = Na 2. Inserting v 
---- 1 leads to R 2 = 2L2/(n + 1). 
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The radius of gyration is derived with use of equation (1). 
• ~ 2  When computing (r (sl, s2)) the average has to be taken 

over all possible angles between the subrods as in model I 
and, additionally, over all possible positions of the breaking 
points. First the latter averaging is considered. An expres- 
sion for the probability of finding k l of k (breaking) points in 
a given interval of length Is2 - sit, where s2, sl E [0, L], is 
found by noting that the situation described is a realization 
of the Bernoulli process Is. In the present case the respective 
probability density function reads 

Pk,(S1, $2)= L-k(Is2--SII)k'(L--IS2--Sll) k-k' 
k1 

(7) 

(72(sl, s2)) is obtained by performing the weighed sum using 
the weights given by equation (7) with respect to the mean 
squared end-to-end distances of the random walks with con- 
tour length Is2 - sll with kl (breaking) points, where kl = 
0, 1 . . . . .  k. These quantities are known from equation (6) 
when N 2~ is replaced by (Is2 - sjl/a) z~ and k ----- n - 1 by 
k l. When using equation (6), the averaging with respect to 
all possible orientations of the segments has implicitly 
been performed. The squared radius of gyration is then 
given by 

l f c f L ~ , ( k i )  L-k(Is2 - s I 1) i 
o o =  

× (L  - Is~ - sl [)k - i is2 - sl  12" I ' ( i  + 2 ) r (2~,  + 1) 
- a 2p-2 I'(2~, + i + 1) 

× dsl ds2 (8) 

I did not succeed in proving that equation (8) can be reduced 
2 to the following expression, but I conjecture that Rg(n, l,) is 

given by 

R2g(n, u)=N2~ 6- a2 I~( nI,(2u+ 2 + n) + 3)1"(2u + 1) _ R2(n + 2, 1,)/6 (9) 

This conjecture stands on firm grounds. First, for ~, = 1/2 it is 
obviously true. Second, for the case ~ = 1 it is shown in 
Appendix A that equation (8) is equivalent to equation (9). 
Thirdly, by interchanging integration and summation and 
rearranging the resulting terms, the conjecture, equation 
(8), can be reduced to ascertain that the following equation 
holds: 

2 ~ , + k + l  2 ~ , + k + 2  l)l E ( - - l )m 
3 /=0 2 u + l + l  2 ~ ' + l + 2  ( m=O 

r ( 2 ~ , + k +  1) m +  1 
× - 1 (lO) 

F ( 2 g + m +  1) (k- l ) ! ( l -m)!  
Equation (10) was checked to be true numerically for k = 0 
to 20 and ~ from 0 to 5 in steps of 0.1. For t, -- 1/2, equation 

2 2 (9) reduces to Rg =Na /6, which is the correct result. 
For v = 1 one obtains R~ = L2/(3n + 9), which yields for 
n --- l the correct rigid rod result R2g =L2/12. For n ---- l one 
obtains 

a2N 2~' 
g~(l, ~,)= 

2(2t, + 1)0' + 1)' 

which ag rees - -a s  it should--wi th  the result derived for 
n = 1 in model I. 

DISCUSSION 

Before the above results are related to existing theories, 
some words are in order about the use of the present results 
in the blob approach. It must be recalled that two different 
blob models have been proposed. The so-called concentra- 
tion blob model was used by deGennes to discuss the 
conformational behaviour of semidilute polymer solutions 
where the chains overlap 3. The models presented here 
correspond, for u = 3/5, to the deGennes picture in which 
the segments inside the blobs obey excluded volume stat- 
istics whereas different blobs are not correlated. Our approach 
yields the respective radius of gyration Rg of a single chain in 
semidilute solution. Rg can be obtained experimentally by 
small-angle neutron scattering when a small amount of the 
chains is tagged by deuteration. The respective value may 
be compared to the corresponding theoretical predictions, 
equations (4) and (9), when relating n to the concentration of 
polymer in the solution 3. Thus, it might even be possible to 
check whether the model of equal blob size or the model of 
varying blob sizes is more appropriate. The present approach 
must not be confused with the thermal blob approach put 
forward by Weill and des Cloiseaux6'~°: see also the recent 
work by Dondos 2°. In that model, the situation is reversed; on 
a small length scale the chain exhibits Gaussian statistics 
whereas excluded volume effects become effective on a larger 
length scale. An expression for Rg in the thermal blob 
approach is given by Weill and des Cloiseaux ~'~. 

Some models have been proposed for the description 
of polymers with mixed statistics tl J6. Khokhlov and 
Semenov used the model of the freely jointed chain (the 
broken rod in my terminology) in order to discuss the liquid- 
crystalline ordering in solutions of semiflexible polymers j~. 
Since they were mainly interested in the respective phase 
diagram, no expressions for R and R~ were derived. 
Mansfield investigated the broken wormlike chain 
model 12. His approach is similar to the one presented here 
in that he considers a chain made of freely joined 
subsegments which are flexible. The difference consists in 
the fact that Mansfield treats the flexibility of the segments 
by using of the Kratky-Prod or wormlike chain model 
where the segment is characterized by its contour length and 
its persistence length X ~. It is found that the introduction of 
breaking points leads to a modification of X only in the 
respective equation for Rg of the wormlike chain. This result 
cannot be compared with the present results since the 
wormlike chain and the chain with critical exponent u treat 
the flexibility and excluded volume constraints on different 
levels which agree only in some limiting cases. Another 
model similar to the present one has been put forward by 
Huber ~4. He discusses the statistics of block copolymers 
made of rigid rods connected by flexible (Gaussian) 
segments. The distance distribution function of any two 
monomers of the polymer can be given explicitly but, in 
general, it is not possible to find closed expressions for the 
respective sums over all monomers. Thus, Huber calculated 
the quantities of interest numerically. Finally, Muroga 
considered the same model as Huber but with more 
Success 13'15'16. He derived a closed expression for Rg. For 
the special case that the length of the flexible segments 
between the rigid rods is reduced to zero, the Muroga 
expressions coincides with equation (4) above, with ~, = 1. 

APPENDIX A 

In the following it will be shown how the conjectured 
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equation (9) is der ived from equation (8)  for the case  v = 1. 
Inserting v = 1 and interchanging integration and s u m m a -  
tion in equation (8) y ie lds  

l 

× ( i + j + 4 )  -1 

After interchanging the summation one obtains 

k ( - - l ) i  ~ 0  ( - - 1 ) J ( k ~  ( k - j ) - I  
R2g(n) =2L2 Z ( iq5~(-~4)  - -  

i=0 .= ( j + 2 ) \ j J  i - j  
k k! L 2 

=2L2 Z ( - 1 ) i ( k _ i ) ! ( i + 4 )  !-  3(k+4) 
i=0 

which is identical to equation (9) for v = 1. 
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